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Abstract

A method is presented to determine the natural frequencies of an orthotropic thin toroidal shell of elliptical cross-

section. The solution is based on the classical Sanders–Budiansky shell theory and uses the differential quadrature method

(DQM) to obtain numerical results. The appropriate scheme for the selection of the sampling points in the DQM for shells

of elliptical cross-section is indicated. Values for frequencies are given for complete toroidal shells, which are entirely free

of supports, or with a support along a circumferential line. The results obtained from the method show close agreement

with previously published results, and with results obtained using the finite element method.

r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Toroidal shells have been proposed for, or used, in such applications as fusion reactor vessels, satellite
antenna support structures, protective devices for nuclear fuel containers, circumferential reinforcement for
submarines, rocket fuel tanks, and diver’s oxygen tanks. The literature on the vibration of toroidal shells
includes work dealing mainly with isotropic shells of circular cross-section. Yamada et al. [1] considered
isotropic toroidal shells with elliptical cross-section. Wang and Redekop [2] considered orthotropic toroidal
shells with circular cross-section. There is little work, if any, on orthotropic toroidal shells of elliptical cross-
section.

In the present work, the theory developed by Wang and Redekop [2] is modified to cover the case of
orthotropic toroidal shells with elliptical cross-section. A scheme is specified for the selection of the differential
quadrature method (DQM) sampling points for this type of geometry. Results from the approach are first
compared with the results of Yamada et al. [1] for isotropic shells of elliptical cross-sections. Further
comparisons are made with the results of Wang and Redekop [2] for orthotropic shells of circular cross-
section. New DQM results are then found for completely free orthotropic shells of prolate and oblate elliptical
cross-section, and for isotropic prolate elliptical shells with a line support on the inner equatorial line. FEM
results are also presented for comparison purposes, and these show good agreement with the DQM results.
ee front matter r 2005 Elsevier Ltd. All rights reserved.
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2. Shell theory

The theory is developed for a toroidal shell of elliptical cross-section (Fig. 1) with bend radius R, axis in the
z direction 2a, axis in radial direction 2b, and wall thickness h. The circumferential coordinate about z is
q1 � f and the meridional coordinate q2 � c. The radius vector is given by

R ¼ r sinfiþ r cosfjþ zk, (1)

where r ¼ Rþ ðb2=GÞ sinc, z ¼ ða2=GÞ cosc, and G ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 cos2 cþ b2 sin2 c

q
. The Lamé parameters ai and

curvatures ki are then given by [3]

a1 ¼ r; a2 ¼ a2b2=G3; k1 ¼ sinc=r; k2 ¼ G3=ða2b2
Þ. (2)

Assuming harmonic motion, the displacement components for the mth mode are taken as

u1 ¼ uðq2Þ sinmf sinot,

u2 ¼ vðq2Þ cosmf sinot,

u3 ¼ wðq2Þ cosmf sinot, ð3Þ

where u; v;w represent the displacement functions in the circumferential, meridional, and normal directions,
dependent on the meridional coordinate q2 only, o is the natural frequency, and t is the time. Application of
the modal expressions (3) leads to a one-dimensional mathematical problem [2], and effectively permits the
analysis of a typical cross-section of the shell. The displacement components (3) are substituted into the
governing equations for an orthotropic thin shell of revolution [2], and the equations are simplified to the
following field conditions for the displacement functions:

e1u;22 þ e2u;1 þ ðe3 þm2e4Þuþme5v;2 þme6vþme7w;22 þme8w;2

þ ðm3e9 þme10Þw ¼ Ou,
θ
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Fig. 1. Cross-sectional geometry of toroidal shell (a) circular and (b) elliptical.
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me11u;2 þme12uþ e13v;22 þme14v;2 þ ðe15 þm2e16Þvþme17w;222 þme18w;22

þ ðe19 þ e20m2Þw;2 þ ðe21 þm2e22Þw ¼ Ov,

me23u;22 þme24u;2 þ ðm
3e25 þme26Þuþ e27v;222 þ e28v;22 þ ðe29 þm2e30Þv;2

þ ðm2e31 þ e32Þvþ e33w;2222 þ e34w;222 þ ðe35 þm2e36Þw;22 þ ðe37 þm2e38Þw;2

þ ðe39 þm2e40 þm4e41Þw ¼ Ow. ð4Þ

In Eq. (4) the ei, i ¼ 1; . . . ; 41 are known functions of the Lamé parameters and curvatures, and the material
properties, O ¼ rho2, and r is the mass density [2]. The comma subscript in Eq. (4) indicates differentiation
with respect to the meridional coordinate. In this shell theory, for orthotropic materials, the independent
material properties include two Young’s moduli, a shear modulus, and a Poisson’s ratio. The set of ordinary
differential equations (4) contains as the unknowns the displacement functions and the natural frequency
parameter O of the mth harmonic. The m ¼ 0 case, i.e. the axisymmetric circumferential harmonic, is a special
case which can easily be extracted from the general theory.

For a complete toroidal shell the meridian forms a closed curve, and boundary conditions need not be
considered. In the present study shells with a circumferential line constraint are also considered. For those
shells the governing equations are replaced by the restraint conditions

u ¼ v ¼ w ¼ 0 (5)

at the point on the cross-section representing the line of constraint.
3. Differential quadrature method

In the DQM [4] a grid of sampling points covering the domain, including the boundary must first be defined.
For the present geometry a set of sampling points following a typical meridian is required. The replacement of
all derivatives with series of terms that contain the product of the displacement functions at the sampling
points and the weighting coefficients must next be made. This second step converts the problem from one of
differential equations to one of linear algebraic equations. The rth derivative of a generic function of a single
variable f ðxÞ at the sampling point xi is replaced by the series

drf ðxÞ

dxr

����
xi

¼
XM

h¼1

A
ðrÞ
ih f ðxhÞ, (6)

where the A
ðrÞ
ih are the weighting coefficients of the rth-order derivative in the x direction for the ith sampling

point, f ðxhÞ is the value of f ðxÞ at the sampling point position xh, and M is the number of sampling points in
the x direction.

In the DQM the weighting coefficients are determined a priori for a preselected grid, with the aid of selected
trial functions. For the present geometry involving a complete meridian, it is convenient to use a Fourier
harmonic basis for the weighting coefficients, and to use equally spaced points in the coordinate of this
direction c. It is evident that the points will not be equally spaced geodetically around the meridian. For such
a scheme, explicit formulas for the weighting coefficients A

ðrÞ
ih are available [4].

Use of the quadrature rule (6) for the derivatives in the field equations (4) leads to transformed algebraic
DQM vibration equations. Enforcement of these equations at the sampling points leads to the set of equations

½K �ðUÞ ¼ b½M�ðUÞ, (7)

where the unknowns ðUÞ are the values of the displacement functions at the sampling points, b is the unknown
eigenvalue, related to o, and ½K �, ½M� are the known ‘stiffness’ and ‘mass’ matrices. For the geometry
involving line support of the shell, the field equations corresponding to the sampling point at the support are
replaced by the restraint conditions (5) prior to the formation of Eq. (7).
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4. Finite element method

The commercial FEM program ADINA [5] is used to provide an alternate solution to the vibration
problem. A four-noded 24 degree-of-freedom shear–deformation shell element is used for the analysis.
Selections in meshing options are made to give elements that are nearly square in plan at the equator. The
modeling accounts for the full geometry, with no account made of any symmetry. The eigenvalues were found
using both the subspace iteration and Lanczos method. The numerical values produced by the two methods
were virtually identical, but the speed of the Lanzcos method was much greater.
5. Validation and results

Two examples involving completely free toroidal shells are presented to validate the current method. The
first is for an isotropic elliptical toroidal shell, and the second is for an orthotropic circular toroidal shell (Fig.
1a). In Table 1 comparisons for the frequency parameter l [1] are given for the first example. The comparisons
are made first with the transfer matrix approach (TMA) of Yamada et al. [1], and then with the FEM.
Indicated also in the first comparison are the convergence characteristics of the DQM approach. The ellipses
are of the prolate (major axis along the z-axis), and of the oblate (major axis along the r-axis) forms. Both
Table 1

Comparison of l for isotropic elliptical toroidal shells with Yamada et al. [1] and with FEM

Method l1 l2 l3 l4 l5 l6 l7 l8

Prolate ðm ¼ 2Þ

DQM(20) 0.02220 0.02344 0.2019 0.2155 0.2672 0.2681 0.2851 0.2911

DQM(40) 0.02231 0.02356 0.2020 0.2669 0.2678 0.2828 0.2920 0.2973

DQM(60) 0.02231 0.02356 0.2020 0.2669 0.2678 0.2828 0.2920 0.2973

DQM(100) 0.02231 0.02356 0.2020 0.2669 0.2678 0.2828 0.2920 0.2973

TMA [1] 0.02217 0.02750 0.2021 0.2660 0.2686 0.2832 0.2917 0.2974

Oblate ðm ¼ 2Þ

DQM(20) 0.04108 0.08420 0.11103 0.12929 0.1460 0.1657 0.1708 0.2238

DQM(40) 0.02979 0.03090 0.08846 0.09113 0.1135 0.1173 0.1204 0.1444

DQM(60) 0.02982 0.03090 0.08890 0.08994 0.1140 0.1152 0.1239 0.1429

DQM(100) 0.02982 0.03090 0.08891 0.08994 0.1140 0.1152 0.1240 0.1428

TMA [1] 0.02975 0.03215 0.08877 0.08979 0.1142 0.1151 0.1242 0.1429

Prolate ðall mÞ

DQM(100) 0.01006 0.02231 0.02356 0.04323 0.0442 0.0579 0.0601 0.0734

FEM — 0.02220 0.02751 0.03896 0.0437 0.0453 0.0596 0.0744

Oblate ðall mÞ

DQM(100) 0.01030 0.02982 0.03090 0.04884 0.0507 0.0736 0.0742 0.0872

FEM 0.01494 0.02966 0.03201 0.04985 0.0502 0.0741 0.0747 0.0870

Table 2

Geometry of circular and elliptical toroidal shell cases (R ¼ 1m)

Case 1—Circular 2—Prolate 3—Oblate

eðmÞ hðmÞ R=e e=h aðmÞ bðmÞ aðmÞ bðmÞ

A 0.25 0.0025 4 100 0.3 0.2 0.2 0.3

B 0.25 0.0050 4 50 0.3 0.2 0.2 0.3

C 0.50 0.0050 2 100 0.6 0.4 0.4 0.6

D 0.75 0.0075 4/3 100 0.8 0.7 0.7 0.8
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ellipses have the following geometric properties: R ¼ 0:3855m, h ¼ 0:001542m, semi-major axis 0.2m, and
semi-minor axis of 0.1m. The values for the material properties were taken as

E ¼ 200GPa; n ¼ 0:3; r ¼ 7800 kg=m3. (8)

The TMA results are for the second circumferential harmonic (m ¼ 2), and are taken from the quoted values
given in Fig. 3 of Yamada et al. [1]. There is agreement within 1% for all eigenvalues, except the second one,
for both the prolate and oblate forms. Comparisons made with the FEM results cover all harmonics. There is
generally good agreement in the two sets of results for both the prolate and the oblate forms.

A description of four cases of toroidal shell geometries (A, B, C, D) is given in Table 2. These geometries
were considered earlier in Ref. [2] for circular cross-sections. Four variations of these geometries (1; 2; 3; 4) are
considered in this work. In the first three variations completely free support conditions and an orthotropic
Fig. 2. Mode shapes 1–6 for circular toroidal shell C1 (frequencies in rad/s).

Fig. 3. Mode shapes 1–6 for prolate elliptical toroidal shell C2 (frequencies in rad/s).
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material are assumed, while in the last one a line support at the inner equator and an isotropic material are
assumed. The cross-sections in the four variations are, respectively, circular, prolate elliptical, oblate elliptical,
and prolate elliptical. The second and fourth variations are thus identical geometrically, aside from the
support. The values for the orthotropic material were taken as

E1 ¼ 7:44GPa; E2 ¼ 3:47GPa; G12 ¼ 2:04GPa; n12 ¼ 0:149; r ¼ 700 kg/m3. (9)

This material is stiffer in the circumferential direction than in the meridional direction.
In Table 3, a comparison is given of the DQM and FEM results for the natural frequencies of the shell cases

A1, B1, C1 and D1 of Table 2, i.e. for the circular cross-section. Also given are the DQM values for m that
indicate the circumferential harmonic. For the DQM two sets of results are given; the first stemming from an
analysis considering the cross-section as a circle [2] (DQM-cir), the second stemming from an analysis
considering the cross-section as an ellipse with equal axes (DQM-ell). The results from the first analysis are the
same as those reported in the study [2] aside from a value containing a typographical error (marked with a
Fig. 4. Mode shapes 1–6 for oblate elliptical toroidal shell C3 (frequencies in rad/s).

Fig. 5. Mode shapes 1–6 for isotropic prolate elliptical toroidal shell C4 with inner equator line support (frequencies in rad/s).
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asterisk). The results from the two DQM analysis agree to four figures. The differences between the DQM and
FEM results range from 0:6% to 8:6%.

New results for natural frequencies are given in Tables 4 and 5 for the variations 2 and 3 of the four basic
toroidal geometries of Table 2, for the orthotropic material defined in (9). The m values of the tables represent
the circumferential harmonic as given by the DQM. In Table 4 the DQM results for the completely free
toroidal shells of prolate elliptical cross-section show differences with FEM results ranging from 0.1% to
10.5%. In Table 5, the DQM results for completely free toroidal shells of oblate elliptical cross-section show
differences with FEM results ranging from 0.4% to 9.8%. Comparing corresponding values of the two tables
it is seen that for the A and B geometries the fundamental frequencies are comparable, whereas for the C and
D geometries the fundamental frequencies of the prolate shells are significantly higher. Comparing
corresponding values of Table 3 with those of Tables 4 and 5 it seen that the shells with circular
Table 3

Comparison of o (rad/s) for orthotropic circular toroidal shells (C1 modes shown in Fig. 2)

Case Method o1 o2 o3 o4 o5 o6

A1 m 2 2 0 3 3 4

FEM 187.5 192.3 197.5 335.4 339.3 454.2

DQM-cir 186.2 191.2 199.7 330.4 334.3 442.2

DQM-ell 186.2 191.2 199.7 330.4 334.3 442.2

B1 m 2 2 0 3 3 4

FEM 267.4 274.7 283.5 496.1 502.5 694.5

DQM-cir 263.4 271.3* 287.5 485.1 491.7 670.7

DQM-ell 263.4 271.3 287.5 485.1 491.7 670.7

C1 m 0 2 2 3 3 —

FEM 144.1 225.5 242.9 379.8 380.4 541.3

DQM-cir 146.0 220.4 238.0 364.0 364.8 —

DQM-ell 146.0 220.4 238.0 364.0 364.8 —

D1 m 0 2 2 2 1 2

FEM 126.7 278.9 292.7 525.4 525.6 594.8

DQM-cir 129.1 269.6 284.2 529.4 542.8 546.1

DQM-ell 129.1 269.6 284.2 529.4 542.8 546.1

(for the entry * in the B1 values a typographical error appears in Ref. [2]).

Table 4

Results for o (rad/s) for orthotropic prolate elliptical toroidal shells (C2 modes shown in Fig. 3)

Case Method o1 o2 o3 o4 o5 o6

A2 m 2 2 0 3 3 4

FEM 146.8 185.2 263.6 311.5 322.4 423.1

DQM 148.6 178.4 264.2 311.2 314.9 413.0

B2 m 2 2 0 3 3 4

FEM 207.1 260.9 374.9 446.6 464.3 621.4

DQM 209.1 243.0 372.6 443.6 449.4 602.5

C2 m 0 2 2 3 3 4

FEM 190.6 200.8 217.8 345.6 349.4 474.7

DQM 192.3 195.7 217.5 335.6 337.3 451.4

D2 m 0 2 2 2 2 1

FEM 137.9 270.3 281.0 503.0 647.4 664.5

DQM 139.7 261.8 273.0 558.6 617.2 628.7
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Table 5

Results for o (rad/s) for orthotropic oblate elliptical toroidal shells (C3 modes shown in Fig. 4)

Case Method o1 o2 o3 o4 o5 o6

A3 m 0 2 2 3 3 4

FEM 149.3 186.1 206.3 317.4 324.9 439.8

QM 144.3 177.3 208.7 313.2 313.6 424.8

B3 m 0 2 2 3 3 4

FEM 215.8 269.0 302.0 484.3 497.9 698.5

DQM 198.2 244.0 309.6 470.7 478.2 667.9

C3 m 0 2 2 3 3 —

FEM 110.1 225.5 229.8 371.4 372.2 551.6

DQM 109.7 220.4 222.4 354.0 354.8 —

D3 m 0 2 2 1 — —

FEM 117.2 288.4 296.4 480.3 498.6 503.0

DQM 119.7 280.0 288.1 453.0 — —

Table 6

Results for o (rad/s) for isotropic prolate elliptical toroidal shells with inner equator line support (C4 modes shown in Fig. 5)

Case Method o1 o2 o3 o4 o5 o6

A4 m 0 1 2 1 2 5

FEM 332.0 1306 3079 3180 3283 3394

DQM 327.3 1284 3027 3135 3232 3349

B4 m 0 1 2 1 2 0

FEM 472.9 1340 3097 3229 3365 3785

DQM 465.6 1321 3050 3188 3315 3722

C4 m 0 1 — 1 2 2

FEM 271.2 904.4 1441 1480 2133 2266

DQM 217.5 906.0 — 1486 2131 2270

D4 m 0 — 1 1 2 2

FEM 134.7 385.1 405.0 586.6 1323 1338

DQM 134.6 — 407.7 587.6 1328 1340
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cross-section have the highest fundamental frequencies for the A and B geometries, while the prolate shells
have the highest fundamental frequencies for the C and D geometries.

In Table 6, the DQM results for natural frequencies for isotropic toroidal shells of prolate elliptical cross-
section with a line support at the inner equator are compared with FEM results. The material properties are
those of Eq. (8). The agreement is within 1:7%, except for one value where there is a difference of 22%. The
mode shapes corresponding to the six lowest natural frequencies of the shell cases C1, C2, C3, and C4, as
determined by the FEM, are given in Figs. 2–5. The mode numbers indicated by the diagrams generally agree
with the DQMmode numbers given in Tables 3–6. In this study it was observed that both the DQM and FEM
may miss eigenvalues. This may arise due to inherent assumptions in the form of the solution, or due to
problems in the extraction of the eigenvalues. Clearly, the simultaneous use of two methods is helpful in
identifying a full set of modes.

6. Conclusions

A procedure has been outlined which enables the determination of the natural frequencies of orthotropic
toroidal shells of elliptical cross-section. Comparison of results for isotropic toroidal shells of elliptical
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cross-section and for orthotropic toroidal shells of circular cross-section show good agreement with previous
results. New results given for toroidal shells of elliptical cross-section, without and with a circumferential line
of support, show good agreement with finite element results.
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